Setup

First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20.

#collapse-show
# Python ≥3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Scikit-Learn ≥0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"

# Common imports
import numpy as np
import os

# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "end_to_end_project"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
    path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format=fig_extension, dpi=resolution)

# Ignore useless warnings (see SciPy issue #5998)
import warnings
warnings.filterwarnings(action="ignore", message="^internal gelsd")

Get the data

#collapse-show
import os
import tarfile
import urllib

DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
HOUSING_PATH = os.path.join("datasets", "housing")
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"

def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
    if not os.path.isdir(housing_path):
        os.makedirs(housing_path)
    tgz_path = os.path.join(housing_path, "housing.tgz")
    urllib.request.urlretrieve(housing_url, tgz_path)
    housing_tgz = tarfile.open(tgz_path)
    housing_tgz.extractall(path=housing_path)
    housing_tgz.close()

fetch_housing_data()
import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
    csv_path = os.path.join(housing_path, "housing.csv")
    return pd.read_csv(csv_path)
housing = load_housing_data()
housing.head()
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity
0 -122.23 37.88 41.0 880.0 129.0 322.0 126.0 8.3252 452600.0 NEAR BAY
1 -122.22 37.86 21.0 7099.0 1106.0 2401.0 1138.0 8.3014 358500.0 NEAR BAY
2 -122.24 37.85 52.0 1467.0 190.0 496.0 177.0 7.2574 352100.0 NEAR BAY
3 -122.25 37.85 52.0 1274.0 235.0 558.0 219.0 5.6431 341300.0 NEAR BAY
4 -122.25 37.85 52.0 1627.0 280.0 565.0 259.0 3.8462 342200.0 NEAR BAY
housing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude             20640 non-null float64
latitude              20640 non-null float64
housing_median_age    20640 non-null float64
total_rooms           20640 non-null float64
total_bedrooms        20433 non-null float64
population            20640 non-null float64
households            20640 non-null float64
median_income         20640 non-null float64
median_house_value    20640 non-null float64
ocean_proximity       20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
housing["ocean_proximity"].value_counts()
<1H OCEAN     9136
INLAND        6551
NEAR OCEAN    2658
NEAR BAY      2290
ISLAND           5
Name: ocean_proximity, dtype: int64
housing.describe()
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value
count 20640.000000 20640.000000 20640.000000 20640.000000 20433.000000 20640.000000 20640.000000 20640.000000 20640.000000
mean -119.569704 35.631861 28.639486 2635.763081 537.870553 1425.476744 499.539680 3.870671 206855.816909
std 2.003532 2.135952 12.585558 2181.615252 421.385070 1132.462122 382.329753 1.899822 115395.615874
min -124.350000 32.540000 1.000000 2.000000 1.000000 3.000000 1.000000 0.499900 14999.000000
25% -121.800000 33.930000 18.000000 1447.750000 296.000000 787.000000 280.000000 2.563400 119600.000000
50% -118.490000 34.260000 29.000000 2127.000000 435.000000 1166.000000 409.000000 3.534800 179700.000000
75% -118.010000 37.710000 37.000000 3148.000000 647.000000 1725.000000 605.000000 4.743250 264725.000000
max -114.310000 41.950000 52.000000 39320.000000 6445.000000 35682.000000 6082.000000 15.000100 500001.000000
%matplotlib inline
import matplotlib.pyplot as plt
housing.hist(bins=50, figsize=(20,15))
save_fig("attribute_histogram_plots")
plt.show()
Saving figure attribute_histogram_plots
# to make this notebook's output identical at every run
np.random.seed(42)

#collapse-show
import numpy as np

# For illustration only. Sklearn has train_test_split()
def split_train_test(data, test_ratio):
    shuffled_indices = np.random.permutation(len(data))
    test_set_size = int(len(data) * test_ratio)
    test_indices = shuffled_indices[:test_set_size]
    train_indices = shuffled_indices[test_set_size:]
    return data.iloc[train_indices], data.iloc[test_indices]

train_set, test_set = split_train_test(housing, 0.2)
len(train_set)
16512
len(test_set)
4128

#collapse-show
from zlib import crc32

def test_set_check(identifier, test_ratio):
    return crc32(np.int64(identifier)) & 0xffffffff < test_ratio * 2**32

def split_train_test_by_id(data, test_ratio, id_column):
    ids = data[id_column]
    in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio))
    return data.loc[~in_test_set], data.loc[in_test_set]

The implementation of test_set_check() above works fine in both Python 2 and Python 3. In earlier releases, the following implementation was proposed, which supported any hash function, but was much slower and did not support Python 2:

import hashlib

def test_set_check(identifier, test_ratio, hash=hashlib.md5):
    return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio

If you want an implementation that supports any hash function and is compatible with both Python 2 and Python 3, here is one:

def test_set_check(identifier, test_ratio, hash=hashlib.md5):
    return bytearray(hash(np.int64(identifier)).digest())[-1] < 256 * test_ratio
housing_with_id = housing.reset_index()   # adds an `index` column
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "index")
housing_with_id["id"] = housing["longitude"] * 1000 + housing["latitude"]
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "id")
test_set.head()
index longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity id
8 8 -122.26 37.84 42.0 2555.0 665.0 1206.0 595.0 2.0804 226700.0 NEAR BAY -122222.16
10 10 -122.26 37.85 52.0 2202.0 434.0 910.0 402.0 3.2031 281500.0 NEAR BAY -122222.15
11 11 -122.26 37.85 52.0 3503.0 752.0 1504.0 734.0 3.2705 241800.0 NEAR BAY -122222.15
12 12 -122.26 37.85 52.0 2491.0 474.0 1098.0 468.0 3.0750 213500.0 NEAR BAY -122222.15
13 13 -122.26 37.84 52.0 696.0 191.0 345.0 174.0 2.6736 191300.0 NEAR BAY -122222.16
from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
test_set.head()
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value ocean_proximity
20046 -119.01 36.06 25.0 1505.0 NaN 1392.0 359.0 1.6812 47700.0 INLAND
3024 -119.46 35.14 30.0 2943.0 NaN 1565.0 584.0 2.5313 45800.0 INLAND
15663 -122.44 37.80 52.0 3830.0 NaN 1310.0 963.0 3.4801 500001.0 NEAR BAY
20484 -118.72 34.28 17.0 3051.0 NaN 1705.0 495.0 5.7376 218600.0 <1H OCEAN
9814 -121.93 36.62 34.0 2351.0 NaN 1063.0 428.0 3.7250 278000.0 NEAR OCEAN
housing["median_income"].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x11a232400>
housing["income_cat"] = pd.cut(housing["median_income"],
                               bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
                               labels=[1, 2, 3, 4, 5])
housing["income_cat"].value_counts()
3    7236
2    6581
4    3639
5    2362
1     822
Name: income_cat, dtype: int64
housing["income_cat"].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x11a307c18>

#collapse-show
from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing["income_cat"]):
    strat_train_set = housing.loc[train_index]
    strat_test_set = housing.loc[test_index]

strat_test_set["income_cat"].value_counts() / len(strat_test_set)
3    0.350533
2    0.318798
4    0.176357
5    0.114583
1    0.039729
Name: income_cat, dtype: float64
housing["income_cat"].value_counts() / len(housing)
3    0.350581
2    0.318847
4    0.176308
5    0.114438
1    0.039826
Name: income_cat, dtype: float64

#collapse-show
def income_cat_proportions(data):
    return data["income_cat"].value_counts() / len(data)

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

compare_props = pd.DataFrame({
    "Overall": income_cat_proportions(housing),
    "Stratified": income_cat_proportions(strat_test_set),
    "Random": income_cat_proportions(test_set),
}).sort_index()
compare_props["Rand. %error"] = 100 * compare_props["Random"] / compare_props["Overall"] - 100
compare_props["Strat. %error"] = 100 * compare_props["Stratified"] / compare_props["Overall"] - 100

compare_props
Overall Stratified Random Rand. %error Strat. %error
1 0.039826 0.039729 0.040213 0.973236 -0.243309
2 0.318847 0.318798 0.324370 1.732260 -0.015195
3 0.350581 0.350533 0.358527 2.266446 -0.013820
4 0.176308 0.176357 0.167393 -5.056334 0.027480
5 0.114438 0.114583 0.109496 -4.318374 0.127011
for set_ in (strat_train_set, strat_test_set):
    set_.drop("income_cat", axis=1, inplace=True)

Discover and visualize the data to gain insights

housing = strat_train_set.copy()
housing.plot(kind="scatter", x="longitude", y="latitude")
save_fig("bad_visualization_plot")
Saving figure bad_visualization_plot
housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)
save_fig("better_visualization_plot")
Saving figure better_visualization_plot

The argument sharex=False fixes a display bug (the x-axis values and legend were not displayed). This is a temporary fix (see: https://github.com/pandas-dev/pandas/issues/10611 ). Thanks to Wilmer Arellano for pointing it out.

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
    s=housing["population"]/100, label="population", figsize=(10,7),
    c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
    sharex=False)
plt.legend()
save_fig("housing_prices_scatterplot")
Saving figure housing_prices_scatterplot
# Download the California image
images_path = os.path.join(PROJECT_ROOT_DIR, "images", "end_to_end_project")
os.makedirs(images_path, exist_ok=True)
DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
filename = "california.png"
print("Downloading", filename)
url = DOWNLOAD_ROOT + "images/end_to_end_project/" + filename
urllib.request.urlretrieve(url, os.path.join(images_path, filename))
Downloading california.png
('./images/end_to_end_project/california.png',
 <http.client.HTTPMessage at 0x7efdc6f79588>)

#collapse-show
import matplotlib.image as mpimg
california_img=mpimg.imread(os.path.join(images_path, filename))
ax = housing.plot(kind="scatter", x="longitude", y="latitude", figsize=(10,7),
                       s=housing['population']/100, label="Population",
                       c="median_house_value", cmap=plt.get_cmap("jet"),
                       colorbar=False, alpha=0.4,
                      )
plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5,
           cmap=plt.get_cmap("jet"))
plt.ylabel("Latitude", fontsize=14)
plt.xlabel("Longitude", fontsize=14)

prices = housing["median_house_value"]
tick_values = np.linspace(prices.min(), prices.max(), 11)
cbar = plt.colorbar()
cbar.ax.set_yticklabels(["$%dk"%(round(v/1000)) for v in tick_values], fontsize=14)
cbar.set_label('Median House Value', fontsize=16)

plt.legend(fontsize=16)
save_fig("california_housing_prices_plot")
plt.show()

Saving figure california_housing_prices_plot
corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value    1.000000
median_income         0.687160
total_rooms           0.135097
housing_median_age    0.114110
households            0.064506
total_bedrooms        0.047689
population           -0.026920
longitude            -0.047432
latitude             -0.142724
Name: median_house_value, dtype: float64
# from pandas.tools.plotting import scatter_matrix # For older versions of Pandas
from pandas.plotting import scatter_matrix

attributes = ["median_house_value", "median_income", "total_rooms",
              "housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))
save_fig("scatter_matrix_plot")
Saving figure scatter_matrix_plot
housing.plot(kind="scatter", x="median_income", y="median_house_value",
             alpha=0.1)
plt.axis([0, 16, 0, 550000])
save_fig("income_vs_house_value_scatterplot")
Saving figure income_vs_house_value_scatterplot
housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]
corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value          1.000000
median_income               0.687160
rooms_per_household         0.146285
total_rooms                 0.135097
housing_median_age          0.114110
households                  0.064506
total_bedrooms              0.047689
population_per_household   -0.021985
population                 -0.026920
longitude                  -0.047432
latitude                   -0.142724
bedrooms_per_room          -0.259984
Name: median_house_value, dtype: float64
housing.plot(kind="scatter", x="rooms_per_household", y="median_house_value",
             alpha=0.2)
plt.axis([0, 5, 0, 520000])
plt.show()
housing.describe()
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income median_house_value rooms_per_household bedrooms_per_room population_per_household
count 16512.000000 16512.000000 16512.000000 16512.000000 16354.000000 16512.000000 16512.000000 16512.000000 16512.000000 16512.000000 16354.000000 16512.000000
mean -119.575834 35.639577 28.653101 2622.728319 534.973890 1419.790819 497.060380 3.875589 206990.920724 5.440341 0.212878 3.096437
std 2.001860 2.138058 12.574726 2138.458419 412.699041 1115.686241 375.720845 1.904950 115703.014830 2.611712 0.057379 11.584826
min -124.350000 32.540000 1.000000 6.000000 2.000000 3.000000 2.000000 0.499900 14999.000000 1.130435 0.100000 0.692308
25% -121.800000 33.940000 18.000000 1443.000000 295.000000 784.000000 279.000000 2.566775 119800.000000 4.442040 0.175304 2.431287
50% -118.510000 34.260000 29.000000 2119.500000 433.000000 1164.000000 408.000000 3.540900 179500.000000 5.232284 0.203031 2.817653
75% -118.010000 37.720000 37.000000 3141.000000 644.000000 1719.250000 602.000000 4.744475 263900.000000 6.056361 0.239831 3.281420
max -114.310000 41.950000 52.000000 39320.000000 6210.000000 35682.000000 5358.000000 15.000100 500001.000000 141.909091 1.000000 1243.333333

Prepare the data for Machine Learning algorithms

housing = strat_train_set.drop("median_house_value", axis=1) # drop labels for training set
housing_labels = strat_train_set["median_house_value"].copy()
sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
sample_incomplete_rows
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income ocean_proximity
4629 -118.30 34.07 18.0 3759.0 NaN 3296.0 1462.0 2.2708 <1H OCEAN
6068 -117.86 34.01 16.0 4632.0 NaN 3038.0 727.0 5.1762 <1H OCEAN
17923 -121.97 37.35 30.0 1955.0 NaN 999.0 386.0 4.6328 <1H OCEAN
13656 -117.30 34.05 6.0 2155.0 NaN 1039.0 391.0 1.6675 INLAND
19252 -122.79 38.48 7.0 6837.0 NaN 3468.0 1405.0 3.1662 <1H OCEAN
sample_incomplete_rows.dropna(subset=["total_bedrooms"])    # option 1
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income ocean_proximity
sample_incomplete_rows.drop("total_bedrooms", axis=1)       # option 2
longitude latitude housing_median_age total_rooms population households median_income ocean_proximity
4629 -118.30 34.07 18.0 3759.0 3296.0 1462.0 2.2708 <1H OCEAN
6068 -117.86 34.01 16.0 4632.0 3038.0 727.0 5.1762 <1H OCEAN
17923 -121.97 37.35 30.0 1955.0 999.0 386.0 4.6328 <1H OCEAN
13656 -117.30 34.05 6.0 2155.0 1039.0 391.0 1.6675 INLAND
19252 -122.79 38.48 7.0 6837.0 3468.0 1405.0 3.1662 <1H OCEAN
median = housing["total_bedrooms"].median()
sample_incomplete_rows["total_bedrooms"].fillna(median, inplace=True) # option 3
sample_incomplete_rows
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income ocean_proximity
4629 -118.30 34.07 18.0 3759.0 433.0 3296.0 1462.0 2.2708 <1H OCEAN
6068 -117.86 34.01 16.0 4632.0 433.0 3038.0 727.0 5.1762 <1H OCEAN
17923 -121.97 37.35 30.0 1955.0 433.0 999.0 386.0 4.6328 <1H OCEAN
13656 -117.30 34.05 6.0 2155.0 433.0 1039.0 391.0 1.6675 INLAND
19252 -122.79 38.48 7.0 6837.0 433.0 3468.0 1405.0 3.1662 <1H OCEAN
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")

Remove the text attribute because median can only be calculated on numerical attributes:

housing_num = housing.drop("ocean_proximity", axis=1)
# alternatively: housing_num = housing.select_dtypes(include=[np.number])
imputer.fit(housing_num)
SimpleImputer(copy=True, fill_value=None, missing_values=nan,
       strategy='median', verbose=0)
imputer.statistics_
array([-118.51  ,   34.26  ,   29.    , 2119.5   ,  433.    , 1164.    ,
        408.    ,    3.5409])

Check that this is the same as manually computing the median of each attribute:

housing_num.median().values
array([-118.51  ,   34.26  ,   29.    , 2119.5   ,  433.    , 1164.    ,
        408.    ,    3.5409])

Transform the training set:

X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns,
                          index=housing.index)
housing_tr.loc[sample_incomplete_rows.index.values]
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income
4629 -118.30 34.07 18.0 3759.0 433.0 3296.0 1462.0 2.2708
6068 -117.86 34.01 16.0 4632.0 433.0 3038.0 727.0 5.1762
17923 -121.97 37.35 30.0 1955.0 433.0 999.0 386.0 4.6328
13656 -117.30 34.05 6.0 2155.0 433.0 1039.0 391.0 1.6675
19252 -122.79 38.48 7.0 6837.0 433.0 3468.0 1405.0 3.1662
imputer.strategy
'median'
housing_tr = pd.DataFrame(X, columns=housing_num.columns,
                          index=housing_num.index)
housing_tr.head()
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income
17606 -121.89 37.29 38.0 1568.0 351.0 710.0 339.0 2.7042
18632 -121.93 37.05 14.0 679.0 108.0 306.0 113.0 6.4214
14650 -117.20 32.77 31.0 1952.0 471.0 936.0 462.0 2.8621
3230 -119.61 36.31 25.0 1847.0 371.0 1460.0 353.0 1.8839
3555 -118.59 34.23 17.0 6592.0 1525.0 4459.0 1463.0 3.0347

Now let's preprocess the categorical input feature, ocean_proximity:

housing_cat = housing[["ocean_proximity"]]
housing_cat.head(10)
ocean_proximity
17606 <1H OCEAN
18632 <1H OCEAN
14650 NEAR OCEAN
3230 INLAND
3555 <1H OCEAN
19480 INLAND
8879 <1H OCEAN
13685 INLAND
4937 <1H OCEAN
4861 <1H OCEAN
from sklearn.preprocessing import OrdinalEncoder

ordinal_encoder = OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
housing_cat_encoded[:10]
array([[0.],
       [0.],
       [4.],
       [1.],
       [0.],
       [1.],
       [0.],
       [1.],
       [0.],
       [0.]])
ordinal_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
       dtype=object)]
from sklearn.preprocessing import OneHotEncoder

cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
housing_cat_1hot
<16512x5 sparse matrix of type '<class 'numpy.float64'>'
	with 16512 stored elements in Compressed Sparse Row format>

By default, the OneHotEncoder class returns a sparse array, but we can convert it to a dense array if needed by calling the toarray() method:

housing_cat_1hot.toarray()
array([[1., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       ...,
       [0., 1., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0.]])

Alternatively, you can set sparse=False when creating the OneHotEncoder:

cat_encoder = OneHotEncoder(sparse=False)
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
housing_cat_1hot
array([[1., 0., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1.],
       ...,
       [0., 1., 0., 0., 0.],
       [1., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0.]])
cat_encoder.categories_
[array(['<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'],
       dtype=object)]

Let's create a custom transformer to add extra attributes:

#collapse-show
from sklearn.base import BaseEstimator, TransformerMixin

# column index
rooms_ix, bedrooms_ix, population_ix, households_ix = 3, 4, 5, 6

class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
    def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
        self.add_bedrooms_per_room = add_bedrooms_per_room
    def fit(self, X, y=None):
        return self  # nothing else to do
    def transform(self, X):
        rooms_per_household = X[:, rooms_ix] / X[:, households_ix]
        population_per_household = X[:, population_ix] / X[:, households_ix]
        if self.add_bedrooms_per_room:
            bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
            return np.c_[X, rooms_per_household, population_per_household,
                         bedrooms_per_room]
        else:
            return np.c_[X, rooms_per_household, population_per_household]

attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)

housing_extra_attribs = pd.DataFrame(
    housing_extra_attribs,
    columns=list(housing.columns)+["rooms_per_household", "population_per_household"],
    index=housing.index)
housing_extra_attribs.head()
longitude latitude housing_median_age total_rooms total_bedrooms population households median_income ocean_proximity rooms_per_household population_per_household
17606 -121.89 37.29 38 1568 351 710 339 2.7042 <1H OCEAN 4.62537 2.0944
18632 -121.93 37.05 14 679 108 306 113 6.4214 <1H OCEAN 6.00885 2.70796
14650 -117.2 32.77 31 1952 471 936 462 2.8621 NEAR OCEAN 4.22511 2.02597
3230 -119.61 36.31 25 1847 371 1460 353 1.8839 INLAND 5.23229 4.13598
3555 -118.59 34.23 17 6592 1525 4459 1463 3.0347 <1H OCEAN 4.50581 3.04785

Now let's build a pipeline for preprocessing the numerical attributes:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline([
        ('imputer', SimpleImputer(strategy="median")),
        ('attribs_adder', CombinedAttributesAdder()),
        ('std_scaler', StandardScaler()),
    ])

housing_num_tr = num_pipeline.fit_transform(housing_num)
housing_num_tr
array([[-1.15604281,  0.77194962,  0.74333089, ..., -0.31205452,
        -0.08649871,  0.15531753],
       [-1.17602483,  0.6596948 , -1.1653172 , ...,  0.21768338,
        -0.03353391, -0.83628902],
       [ 1.18684903, -1.34218285,  0.18664186, ..., -0.46531516,
        -0.09240499,  0.4222004 ],
       ...,
       [ 1.58648943, -0.72478134, -1.56295222, ...,  0.3469342 ,
        -0.03055414, -0.52177644],
       [ 0.78221312, -0.85106801,  0.18664186, ...,  0.02499488,
         0.06150916, -0.30340741],
       [-1.43579109,  0.99645926,  1.85670895, ..., -0.22852947,
        -0.09586294,  0.10180567]])

#collapse-show
from sklearn.compose import ColumnTransformer

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

full_pipeline = ColumnTransformer([
        ("num", num_pipeline, num_attribs),
        ("cat", OneHotEncoder(), cat_attribs),
    ])

housing_prepared = full_pipeline.fit_transform(housing)

housing_prepared
array([[-1.15604281,  0.77194962,  0.74333089, ...,  0.        ,
         0.        ,  0.        ],
       [-1.17602483,  0.6596948 , -1.1653172 , ...,  0.        ,
         0.        ,  0.        ],
       [ 1.18684903, -1.34218285,  0.18664186, ...,  0.        ,
         0.        ,  1.        ],
       ...,
       [ 1.58648943, -0.72478134, -1.56295222, ...,  0.        ,
         0.        ,  0.        ],
       [ 0.78221312, -0.85106801,  0.18664186, ...,  0.        ,
         0.        ,  0.        ],
       [-1.43579109,  0.99645926,  1.85670895, ...,  0.        ,
         1.        ,  0.        ]])
housing_prepared.shape
(16512, 16)

For reference, here is the old solution based on a DataFrameSelector transformer (to just select a subset of the Pandas DataFrame columns), and a FeatureUnion:

from sklearn.base import BaseEstimator, TransformerMixin

# Create a class to select numerical or categorical columns 
class OldDataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values

Now let's join all these components into a big pipeline that will preprocess both the numerical and the categorical features:

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

old_num_pipeline = Pipeline([
        ('selector', OldDataFrameSelector(num_attribs)),
        ('imputer', SimpleImputer(strategy="median")),
        ('attribs_adder', CombinedAttributesAdder()),
        ('std_scaler', StandardScaler()),
    ])

old_cat_pipeline = Pipeline([
        ('selector', OldDataFrameSelector(cat_attribs)),
        ('cat_encoder', OneHotEncoder(sparse=False)),
    ])
from sklearn.pipeline import FeatureUnion

old_full_pipeline = FeatureUnion(transformer_list=[
        ("num_pipeline", old_num_pipeline),
        ("cat_pipeline", old_cat_pipeline),
    ])
old_housing_prepared = old_full_pipeline.fit_transform(housing)
old_housing_prepared
array([[-1.15604281,  0.77194962,  0.74333089, ...,  0.        ,
         0.        ,  0.        ],
       [-1.17602483,  0.6596948 , -1.1653172 , ...,  0.        ,
         0.        ,  0.        ],
       [ 1.18684903, -1.34218285,  0.18664186, ...,  0.        ,
         0.        ,  1.        ],
       ...,
       [ 1.58648943, -0.72478134, -1.56295222, ...,  0.        ,
         0.        ,  0.        ],
       [ 0.78221312, -0.85106801,  0.18664186, ...,  0.        ,
         0.        ,  0.        ],
       [-1.43579109,  0.99645926,  1.85670895, ...,  0.        ,
         1.        ,  0.        ]])

The result is the same as with the ColumnTransformer:

np.allclose(housing_prepared, old_housing_prepared)
True

Select and train a model

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,
         normalize=False)
# let's try the full preprocessing pipeline on a few training instances
some_data = housing.iloc[:5]
some_labels = housing_labels.iloc[:5]
some_data_prepared = full_pipeline.transform(some_data)

print("Predictions:", lin_reg.predict(some_data_prepared))
Predictions: [210644.60459286 317768.80697211 210956.43331178  59218.98886849
 189747.55849879]

Compare against the actual values:

print("Labels:", list(some_labels))
Labels: [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]
some_data_prepared
array([[-1.15604281,  0.77194962,  0.74333089, -0.49323393, -0.44543821,
        -0.63621141, -0.42069842, -0.61493744, -0.31205452, -0.08649871,
         0.15531753,  1.        ,  0.        ,  0.        ,  0.        ,
         0.        ],
       [-1.17602483,  0.6596948 , -1.1653172 , -0.90896655, -1.0369278 ,
        -0.99833135, -1.02222705,  1.33645936,  0.21768338, -0.03353391,
        -0.83628902,  1.        ,  0.        ,  0.        ,  0.        ,
         0.        ],
       [ 1.18684903, -1.34218285,  0.18664186, -0.31365989, -0.15334458,
        -0.43363936, -0.0933178 , -0.5320456 , -0.46531516, -0.09240499,
         0.4222004 ,  0.        ,  0.        ,  0.        ,  0.        ,
         1.        ],
       [-0.01706767,  0.31357576, -0.29052016, -0.36276217, -0.39675594,
         0.03604096, -0.38343559, -1.04556555, -0.07966124,  0.08973561,
        -0.19645314,  0.        ,  1.        ,  0.        ,  0.        ,
         0.        ],
       [ 0.49247384, -0.65929936, -0.92673619,  1.85619316,  2.41221109,
         2.72415407,  2.57097492, -0.44143679, -0.35783383, -0.00419445,
         0.2699277 ,  1.        ,  0.        ,  0.        ,  0.        ,
         0.        ]])
from sklearn.metrics import mean_squared_error

housing_predictions = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse
68628.19819848922
from sklearn.metrics import mean_absolute_error

lin_mae = mean_absolute_error(housing_labels, housing_predictions)
lin_mae
49439.89599001897
from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor(random_state=42)
tree_reg.fit(housing_prepared, housing_labels)
DecisionTreeRegressor(criterion='mse', max_depth=None, max_features=None,
           max_leaf_nodes=None, min_impurity_decrease=0.0,
           min_impurity_split=None, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           presort=False, random_state=42, splitter='best')
housing_predictions = tree_reg.predict(housing_prepared)
tree_mse = mean_squared_error(housing_labels, housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
0.0

Fine-tune your model

from sklearn.model_selection import cross_val_score

scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
                         scoring="neg_mean_squared_error", cv=10)
tree_rmse_scores = np.sqrt(-scores)
def display_scores(scores):
    print("Scores:", scores)
    print("Mean:", scores.mean())
    print("Standard deviation:", scores.std())

display_scores(tree_rmse_scores)
Scores: [70194.33680785 66855.16363941 72432.58244769 70758.73896782
 71115.88230639 75585.14172901 70262.86139133 70273.6325285
 75366.87952553 71231.65726027]
Mean: 71407.68766037929
Standard deviation: 2439.4345041191004
lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels,
                             scoring="neg_mean_squared_error", cv=10)
lin_rmse_scores = np.sqrt(-lin_scores)
display_scores(lin_rmse_scores)
Scores: [66782.73843989 66960.118071   70347.95244419 74739.57052552
 68031.13388938 71193.84183426 64969.63056405 68281.61137997
 71552.91566558 67665.10082067]
Mean: 69052.46136345083
Standard deviation: 2731.674001798348

Note: we specify n_estimators=100 to be future-proof since the default value is going to change to 100 in Scikit-Learn 0.22 (for simplicity, this is not shown in the book).

from sklearn.ensemble import RandomForestRegressor

forest_reg = RandomForestRegressor(n_estimators=100, random_state=42)
forest_reg.fit(housing_prepared, housing_labels)
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,
           oob_score=False, random_state=42, verbose=0, warm_start=False)
housing_predictions = forest_reg.predict(housing_prepared)
forest_mse = mean_squared_error(housing_labels, housing_predictions)
forest_rmse = np.sqrt(forest_mse)
forest_rmse
18603.515021376355
from sklearn.model_selection import cross_val_score

forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels,
                                scoring="neg_mean_squared_error", cv=10)
forest_rmse_scores = np.sqrt(-forest_scores)
display_scores(forest_rmse_scores)
Scores: [49519.80364233 47461.9115823  50029.02762854 52325.28068953
 49308.39426421 53446.37892622 48634.8036574  47585.73832311
 53490.10699751 50021.5852922 ]
Mean: 50182.303100336096
Standard deviation: 2097.0810550985693
scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
pd.Series(np.sqrt(-scores)).describe()
count       10.000000
mean     69052.461363
std       2879.437224
min      64969.630564
25%      67136.363758
50%      68156.372635
75%      70982.369487
max      74739.570526
dtype: float64
from sklearn.svm import SVR

svm_reg = SVR(kernel="linear")
svm_reg.fit(housing_prepared, housing_labels)
housing_predictions = svm_reg.predict(housing_prepared)
svm_mse = mean_squared_error(housing_labels, housing_predictions)
svm_rmse = np.sqrt(svm_mse)
svm_rmse
111094.6308539982

#collapse-show
from sklearn.model_selection import GridSearchCV

param_grid = [
    # try 12 (3×4) combinations of hyperparameters
    {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
    # then try 6 (2×3) combinations with bootstrap set as False
    {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
  ]

forest_reg = RandomForestRegressor(random_state=42)
# train across 5 folds, that's a total of (12+6)*5=90 rounds of training 
grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                           scoring='neg_mean_squared_error',
                           return_train_score=True)
grid_search.fit(housing_prepared, housing_labels)

GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=None,
           oob_score=False, random_state=42, verbose=0, warm_start=False),
       fit_params=None, iid='warn', n_jobs=None,
       param_grid=[{'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]}, {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='neg_mean_squared_error', verbose=0)

The best hyperparameter combination found:

grid_search.best_params_
{'max_features': 8, 'n_estimators': 30}
grid_search.best_estimator_
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features=8, max_leaf_nodes=None, min_impurity_decrease=0.0,
           min_impurity_split=None, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           n_estimators=30, n_jobs=None, oob_score=False, random_state=42,
           verbose=0, warm_start=False)

Let's look at the score of each hyperparameter combination tested during the grid search:

cvres = grid_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
    print(np.sqrt(-mean_score), params)
63669.05791727153 {'max_features': 2, 'n_estimators': 3}
55627.16171305252 {'max_features': 2, 'n_estimators': 10}
53384.57867637289 {'max_features': 2, 'n_estimators': 30}
60965.99185930139 {'max_features': 4, 'n_estimators': 3}
52740.98248528835 {'max_features': 4, 'n_estimators': 10}
50377.344409590376 {'max_features': 4, 'n_estimators': 30}
58663.84733372485 {'max_features': 6, 'n_estimators': 3}
52006.15355973719 {'max_features': 6, 'n_estimators': 10}
50146.465964159885 {'max_features': 6, 'n_estimators': 30}
57869.25504027614 {'max_features': 8, 'n_estimators': 3}
51711.09443660957 {'max_features': 8, 'n_estimators': 10}
49682.25345942335 {'max_features': 8, 'n_estimators': 30}
62895.088889905004 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
54658.14484390074 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
59470.399594730654 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
52725.01091081235 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
57490.612956065226 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
51009.51445842374 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}
pd.DataFrame(grid_search.cv_results_)
mean_fit_time std_fit_time mean_score_time std_score_time param_max_features param_n_estimators param_bootstrap params split0_test_score split1_test_score ... mean_test_score std_test_score rank_test_score split0_train_score split1_train_score split2_train_score split3_train_score split4_train_score mean_train_score std_train_score
0 0.060687 0.001166 0.004219 0.000192 2 3 NaN {'max_features': 2, 'n_estimators': 3} -3.837622e+09 -4.147108e+09 ... -4.053749e+09 1.519609e+08 18 -1.064113e+09 -1.105142e+09 -1.116550e+09 -1.112342e+09 -1.129650e+09 -1.105559e+09 2.220402e+07
1 0.197437 0.003169 0.011206 0.000903 2 10 NaN {'max_features': 2, 'n_estimators': 10} -3.047771e+09 -3.254861e+09 ... -3.094381e+09 1.327046e+08 11 -5.927175e+08 -5.870952e+08 -5.776964e+08 -5.716332e+08 -5.802501e+08 -5.818785e+08 7.345821e+06
2 0.595235 0.004583 0.032281 0.003131 2 30 NaN {'max_features': 2, 'n_estimators': 30} -2.689185e+09 -3.021086e+09 ... -2.849913e+09 1.626879e+08 9 -4.381089e+08 -4.391272e+08 -4.371702e+08 -4.376955e+08 -4.452654e+08 -4.394734e+08 2.966320e+06
3 0.099332 0.001025 0.003848 0.000278 4 3 NaN {'max_features': 4, 'n_estimators': 3} -3.730181e+09 -3.786886e+09 ... -3.716852e+09 1.631421e+08 16 -9.865163e+08 -1.012565e+09 -9.169425e+08 -1.037400e+09 -9.707739e+08 -9.848396e+08 4.084607e+07
4 0.327148 0.002355 0.011608 0.000659 4 10 NaN {'max_features': 4, 'n_estimators': 10} -2.666283e+09 -2.784511e+09 ... -2.781611e+09 1.268562e+08 8 -5.097115e+08 -5.162820e+08 -4.962893e+08 -5.436192e+08 -5.160297e+08 -5.163863e+08 1.542862e+07
5 0.972486 0.004962 0.030287 0.000912 4 30 NaN {'max_features': 4, 'n_estimators': 30} -2.387153e+09 -2.588448e+09 ... -2.537877e+09 1.214603e+08 3 -3.838835e+08 -3.880268e+08 -3.790867e+08 -4.040957e+08 -3.845520e+08 -3.879289e+08 8.571233e+06
6 0.133793 0.003362 0.003705 0.000122 6 3 NaN {'max_features': 6, 'n_estimators': 3} -3.119657e+09 -3.586319e+09 ... -3.441447e+09 1.893141e+08 14 -9.245343e+08 -8.886939e+08 -9.353135e+08 -9.009801e+08 -8.624664e+08 -9.023976e+08 2.591445e+07
7 0.446336 0.003465 0.012375 0.000601 6 10 NaN {'max_features': 6, 'n_estimators': 10} -2.549663e+09 -2.782039e+09 ... -2.704640e+09 1.471542e+08 6 -4.980344e+08 -5.045869e+08 -4.994664e+08 -4.990325e+08 -5.055542e+08 -5.013349e+08 3.100456e+06
8 1.355474 0.004652 0.032426 0.002536 6 30 NaN {'max_features': 6, 'n_estimators': 30} -2.370010e+09 -2.583638e+09 ... -2.514668e+09 1.285063e+08 2 -3.838538e+08 -3.804711e+08 -3.805218e+08 -3.856095e+08 -3.901917e+08 -3.841296e+08 3.617057e+06
9 0.171477 0.001233 0.003917 0.000316 8 3 NaN {'max_features': 8, 'n_estimators': 3} -3.353504e+09 -3.348552e+09 ... -3.348851e+09 1.241864e+08 13 -9.228123e+08 -8.553031e+08 -8.603321e+08 -8.881964e+08 -9.151287e+08 -8.883545e+08 2.750227e+07
10 0.577159 0.002378 0.011366 0.000736 8 10 NaN {'max_features': 8, 'n_estimators': 10} -2.571970e+09 -2.718994e+09 ... -2.674037e+09 1.392720e+08 5 -4.932416e+08 -4.815238e+08 -4.730979e+08 -5.155367e+08 -4.985555e+08 -4.923911e+08 1.459294e+07
11 1.739312 0.003247 0.030980 0.002178 8 30 NaN {'max_features': 8, 'n_estimators': 30} -2.357390e+09 -2.546640e+09 ... -2.468326e+09 1.091647e+08 1 -3.841658e+08 -3.744500e+08 -3.773239e+08 -3.882250e+08 -3.810005e+08 -3.810330e+08 4.871017e+06
12 0.094185 0.001679 0.004966 0.000238 2 3 False {'bootstrap': False, 'max_features': 2, 'n_est... -3.785816e+09 -4.166012e+09 ... -3.955792e+09 1.900966e+08 17 -0.000000e+00 -0.000000e+00 -0.000000e+00 -0.000000e+00 -0.000000e+00 0.000000e+00 0.000000e+00
13 0.313036 0.002217 0.013152 0.001291 2 10 False {'bootstrap': False, 'max_features': 2, 'n_est... -2.810721e+09 -3.107789e+09 ... -2.987513e+09 1.539231e+08 10 -6.056477e-02 -0.000000e+00 -0.000000e+00 -0.000000e+00 -2.967449e+00 -6.056027e-01 1.181156e+00
14 0.125452 0.002900 0.004471 0.000239 3 3 False {'bootstrap': False, 'max_features': 3, 'n_est... -3.618324e+09 -3.441527e+09 ... -3.536728e+09 7.795196e+07 15 -0.000000e+00 -0.000000e+00 -0.000000e+00 -0.000000e+00 -6.072840e+01 -1.214568e+01 2.429136e+01
15 0.413205 0.003939 0.013399 0.001358 3 10 False {'bootstrap': False, 'max_features': 3, 'n_est... -2.757999e+09 -2.851737e+09 ... -2.779927e+09 6.286611e+07 7 -2.089484e+01 -0.000000e+00 -0.000000e+00 -0.000000e+00 -5.465556e+00 -5.272080e+00 8.093117e+00
16 0.155506 0.002193 0.004849 0.000425 4 3 False {'bootstrap': False, 'max_features': 4, 'n_est... -3.134040e+09 -3.559375e+09 ... -3.305171e+09 1.879203e+08 12 -0.000000e+00 -0.000000e+00 -0.000000e+00 -0.000000e+00 -0.000000e+00 0.000000e+00 0.000000e+00
17 0.516612 0.001973 0.013149 0.000834 4 10 False {'bootstrap': False, 'max_features': 4, 'n_est... -2.525578e+09 -2.710011e+09 ... -2.601971e+09 1.088031e+08 4 -0.000000e+00 -1.514119e-02 -0.000000e+00 -0.000000e+00 -0.000000e+00 -3.028238e-03 6.056477e-03

18 rows × 23 columns

#collapse-show
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_distribs = {
        'n_estimators': randint(low=1, high=200),
        'max_features': randint(low=1, high=8),
    }

forest_reg = RandomForestRegressor(random_state=42)
rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,
                                n_iter=10, cv=5, scoring='neg_mean_squared_error', random_state=42)
rnd_search.fit(housing_prepared, housing_labels)

RandomizedSearchCV(cv=5, error_score='raise-deprecating',
          estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators='warn', n_jobs=None,
           oob_score=False, random_state=42, verbose=0, warm_start=False),
          fit_params=None, iid='warn', n_iter=10, n_jobs=None,
          param_distributions={'n_estimators': <scipy.stats._distn_infrastructure.rv_frozen object at 0x127470860>, 'max_features': <scipy.stats._distn_infrastructure.rv_frozen object at 0x127470828>},
          pre_dispatch='2*n_jobs', random_state=42, refit=True,
          return_train_score='warn', scoring='neg_mean_squared_error',
          verbose=0)
cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
    print(np.sqrt(-mean_score), params)
49150.657232934034 {'max_features': 7, 'n_estimators': 180}
51389.85295710133 {'max_features': 5, 'n_estimators': 15}
50796.12045980556 {'max_features': 3, 'n_estimators': 72}
50835.09932039744 {'max_features': 5, 'n_estimators': 21}
49280.90117886215 {'max_features': 7, 'n_estimators': 122}
50774.86679035961 {'max_features': 3, 'n_estimators': 75}
50682.75001237282 {'max_features': 3, 'n_estimators': 88}
49608.94061293652 {'max_features': 5, 'n_estimators': 100}
50473.57642831875 {'max_features': 3, 'n_estimators': 150}
64429.763804893395 {'max_features': 5, 'n_estimators': 2}
feature_importances = grid_search.best_estimator_.feature_importances_
feature_importances
array([7.33442355e-02, 6.29090705e-02, 4.11437985e-02, 1.46726854e-02,
       1.41064835e-02, 1.48742809e-02, 1.42575993e-02, 3.66158981e-01,
       5.64191792e-02, 1.08792957e-01, 5.33510773e-02, 1.03114883e-02,
       1.64780994e-01, 6.02803867e-05, 1.96041560e-03, 2.85647464e-03])
extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]
#cat_encoder = cat_pipeline.named_steps["cat_encoder"] # old solution
cat_encoder = full_pipeline.named_transformers_["cat"]
cat_one_hot_attribs = list(cat_encoder.categories_[0])
attributes = num_attribs + extra_attribs + cat_one_hot_attribs
sorted(zip(feature_importances, attributes), reverse=True)
[(0.3661589806181342, 'median_income'),
 (0.1647809935615905, 'INLAND'),
 (0.10879295677551573, 'pop_per_hhold'),
 (0.07334423551601242, 'longitude'),
 (0.0629090704826203, 'latitude'),
 (0.05641917918195401, 'rooms_per_hhold'),
 (0.05335107734767581, 'bedrooms_per_room'),
 (0.041143798478729635, 'housing_median_age'),
 (0.014874280890402767, 'population'),
 (0.014672685420543237, 'total_rooms'),
 (0.014257599323407807, 'households'),
 (0.014106483453584102, 'total_bedrooms'),
 (0.010311488326303787, '<1H OCEAN'),
 (0.002856474637320158, 'NEAR OCEAN'),
 (0.00196041559947807, 'NEAR BAY'),
 (6.028038672736599e-05, 'ISLAND')]
final_model = grid_search.best_estimator_

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

X_test_prepared = full_pipeline.transform(X_test)
final_predictions = final_model.predict(X_test_prepared)

final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse)
final_rmse
47730.22690385927

We can compute a 95% confidence interval for the test RMSE:

from scipy import stats

confidence = 0.95
squared_errors = (final_predictions - y_test) ** 2
np.sqrt(stats.t.interval(confidence, len(squared_errors) - 1,
                         loc=squared_errors.mean(),
                         scale=stats.sem(squared_errors)))
array([45685.10470776, 49691.25001878])

We could compute the interval manually like this:

m = len(squared_errors)
mean = squared_errors.mean()
tscore = stats.t.ppf((1 + confidence) / 2, df=m - 1)
tmargin = tscore * squared_errors.std(ddof=1) / np.sqrt(m)
np.sqrt(mean - tmargin), np.sqrt(mean + tmargin)
(45685.10470776014, 49691.25001877871)

Alternatively, we could use a z-scores rather than t-scores:

zscore = stats.norm.ppf((1 + confidence) / 2)
zmargin = zscore * squared_errors.std(ddof=1) / np.sqrt(m)
np.sqrt(mean - zmargin), np.sqrt(mean + zmargin)
(45685.717918136594, 49690.68623889426)

Extra material

A full pipeline with both preparation and prediction

full_pipeline_with_predictor = Pipeline([
        ("preparation", full_pipeline),
        ("linear", LinearRegression())
    ])

full_pipeline_with_predictor.fit(housing, housing_labels)
full_pipeline_with_predictor.predict(some_data)
array([210644.60459286, 317768.80697211, 210956.43331178,  59218.98886849,
       189747.55849879])

Model persistence using joblib

my_model = full_pipeline_with_predictor
import joblib
joblib.dump(my_model, "my_model.pkl") # DIFF
#...
my_model_loaded = joblib.load("my_model.pkl") # DIFF

Example SciPy distributions for RandomizedSearchCV

from scipy.stats import geom, expon
geom_distrib=geom(0.5).rvs(10000, random_state=42)
expon_distrib=expon(scale=1).rvs(10000, random_state=42)
plt.hist(geom_distrib, bins=50)
plt.show()
plt.hist(expon_distrib, bins=50)
plt.show()

Exercise solutions

1.

Question: Try a Support Vector Machine regressor (sklearn.svm.SVR), with various hyperparameters such as kernel="linear" (with various values for the C hyperparameter) or kernel="rbf" (with various values for the C and gamma hyperparameters). Don't worry about what these hyperparameters mean for now. How does the best SVR predictor perform?

from sklearn.model_selection import GridSearchCV

param_grid = [
        {'kernel': ['linear'], 'C': [10., 30., 100., 300., 1000., 3000., 10000., 30000.0]},
        {'kernel': ['rbf'], 'C': [1.0, 3.0, 10., 30., 100., 300., 1000.0],
         'gamma': [0.01, 0.03, 0.1, 0.3, 1.0, 3.0]},
    ]

svm_reg = SVR()
grid_search = GridSearchCV(svm_reg, param_grid, cv=5, scoring='neg_mean_squared_error', verbose=2)
grid_search.fit(housing_prepared, housing_labels)
Fitting 5 folds for each of 50 candidates, totalling 250 fits
[CV] C=10.0, kernel=linear ...........................................
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV] ............................ C=10.0, kernel=linear, total=   5.1s
[CV] C=10.0, kernel=linear ...........................................
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    7.3s remaining:    0.0s
[CV] ............................ C=10.0, kernel=linear, total=   5.1s
[CV] C=10.0, kernel=linear ...........................................
[CV] ............................ C=10.0, kernel=linear, total=   5.2s
[CV] C=10.0, kernel=linear ...........................................
[CV] ............................ C=10.0, kernel=linear, total=   5.1s
[CV] C=10.0, kernel=linear ...........................................
[CV] ............................ C=10.0, kernel=linear, total=   5.1s
[CV] C=30.0, kernel=linear ...........................................
[CV] ............................ C=30.0, kernel=linear, total=   5.0s
[CV] C=30.0, kernel=linear ...........................................
[CV] ............................ C=30.0, kernel=linear, total=   5.0s
[CV] C=30.0, kernel=linear ...........................................
[CV] ............................ C=30.0, kernel=linear, total=   5.3s
[CV] C=30.0, kernel=linear ...........................................
[CV] ............................ C=30.0, kernel=linear, total=   5.1s
[CV] C=30.0, kernel=linear ...........................................
[CV] ............................ C=30.0, kernel=linear, total=   5.0s
[CV] C=100.0, kernel=linear ..........................................
[CV] ........................... C=100.0, kernel=linear, total=   5.1s
[CV] C=100.0, kernel=linear ..........................................
[CV] ........................... C=100.0, kernel=linear, total=   5.0s
[CV] C=100.0, kernel=linear ..........................................
[CV] ........................... C=100.0, kernel=linear, total=   5.1s
[CV] C=100.0, kernel=linear ..........................................
[CV] ........................... C=100.0, kernel=linear, total=   5.0s
[CV] C=100.0, kernel=linear ..........................................
[CV] ........................... C=100.0, kernel=linear, total=   5.0s
[CV] C=300.0, kernel=linear ..........................................
[CV] ........................... C=300.0, kernel=linear, total=   5.1s
<<434 more lines>>
[CV] C=1000.0, gamma=0.1, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=0.1, kernel=rbf, total=   8.0s
[CV] C=1000.0, gamma=0.1, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=0.1, kernel=rbf, total=   8.0s
[CV] C=1000.0, gamma=0.3, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=0.3, kernel=rbf, total=   8.0s
[CV] C=1000.0, gamma=0.3, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=0.3, kernel=rbf, total=   8.0s
[CV] C=1000.0, gamma=0.3, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=0.3, kernel=rbf, total=   8.0s
[CV] C=1000.0, gamma=0.3, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=0.3, kernel=rbf, total=   8.0s
[CV] C=1000.0, gamma=0.3, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=0.3, kernel=rbf, total=   8.0s
[CV] C=1000.0, gamma=1.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=1.0, kernel=rbf, total=   8.6s
[CV] C=1000.0, gamma=1.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=1.0, kernel=rbf, total=   8.7s
[CV] C=1000.0, gamma=1.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=1.0, kernel=rbf, total=   9.4s
[CV] C=1000.0, gamma=1.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=1.0, kernel=rbf, total=   9.1s
[CV] C=1000.0, gamma=1.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=1.0, kernel=rbf, total=   8.9s
[CV] C=1000.0, gamma=3.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=3.0, kernel=rbf, total=  10.9s
[CV] C=1000.0, gamma=3.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=3.0, kernel=rbf, total=  11.1s
[CV] C=1000.0, gamma=3.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=3.0, kernel=rbf, total=  11.1s
[CV] C=1000.0, gamma=3.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=3.0, kernel=rbf, total=  11.0s
[CV] C=1000.0, gamma=3.0, kernel=rbf .................................
[CV] .................. C=1000.0, gamma=3.0, kernel=rbf, total=  11.1s
[Parallel(n_jobs=1)]: Done 250 out of 250 | elapsed: 52.8min finished
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
  gamma='auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True,
  tol=0.001, verbose=False),
       fit_params=None, iid='warn', n_jobs=None,
       param_grid=[{'kernel': ['linear'], 'C': [10.0, 30.0, 100.0, 300.0, 1000.0, 3000.0, 10000.0, 30000.0]}, {'kernel': ['rbf'], 'C': [1.0, 3.0, 10.0, 30.0, 100.0, 300.0, 1000.0], 'gamma': [0.01, 0.03, 0.1, 0.3, 1.0, 3.0]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring='neg_mean_squared_error', verbose=2)

The best model achieves the following score (evaluated using 5-fold cross validation):

negative_mse = grid_search.best_score_
rmse = np.sqrt(-negative_mse)
rmse
70363.90313964167

That's much worse than the RandomForestRegressor. Let's check the best hyperparameters found:

grid_search.best_params_
{'C': 30000.0, 'kernel': 'linear'}

The linear kernel seems better than the RBF kernel. Notice that the value of C is the maximum tested value. When this happens you definitely want to launch the grid search again with higher values for C (removing the smallest values), because it is likely that higher values of C will be better.

2.

Question: Try replacing GridSearchCV with RandomizedSearchCV.

#collapse-show
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import expon, reciprocal

# see https://docs.scipy.org/doc/scipy/reference/stats.html
# for `expon()` and `reciprocal()` documentation and more probability distribution functions.

# Note: gamma is ignored when kernel is "linear"
param_distribs = {
        'kernel': ['linear', 'rbf'],
        'C': reciprocal(20, 200000),
        'gamma': expon(scale=1.0),
    }

svm_reg = SVR()
rnd_search = RandomizedSearchCV(svm_reg, param_distributions=param_distribs,
                                n_iter=50, cv=5, scoring='neg_mean_squared_error',
                                verbose=2, random_state=42)
rnd_search.fit(housing_prepared, housing_labels)

Fitting 5 folds for each of 50 candidates, totalling 250 fits
[CV] C=629.782329591372, gamma=3.010121430917521, kernel=linear ......
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV]  C=629.782329591372, gamma=3.010121430917521, kernel=linear, total=   5.6s
[CV] C=629.782329591372, gamma=3.010121430917521, kernel=linear ......
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    8.0s remaining:    0.0s
[CV]  C=629.782329591372, gamma=3.010121430917521, kernel=linear, total=   5.7s
[CV] C=629.782329591372, gamma=3.010121430917521, kernel=linear ......
[CV]  C=629.782329591372, gamma=3.010121430917521, kernel=linear, total=   5.8s
[CV] C=629.782329591372, gamma=3.010121430917521, kernel=linear ......
[CV]  C=629.782329591372, gamma=3.010121430917521, kernel=linear, total=   5.4s
[CV] C=629.782329591372, gamma=3.010121430917521, kernel=linear ......
[CV]  C=629.782329591372, gamma=3.010121430917521, kernel=linear, total=   5.8s
[CV] C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf ......
[CV]  C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf, total=  10.8s
[CV] C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf ......
[CV]  C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf, total=  11.2s
[CV] C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf ......
[CV]  C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf, total=  10.8s
[CV] C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf ......
[CV]  C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf, total=  11.4s
[CV] C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf ......
[CV]  C=26290.206464300216, gamma=0.9084469696321253, kernel=rbf, total=  11.7s
[CV] C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf .....
[CV]  C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf, total=   9.0s
[CV] C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf .....
[CV]  C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf, total=   9.3s
[CV] C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf .....
[CV]  C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf, total=   9.0s
[CV] C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf .....
[CV]  C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf, total=   9.3s
[CV] C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf .....
[CV]  C=84.14107900575871, gamma=0.059838768608680676, kernel=rbf, total=   8.9s
[CV] C=432.37884813148855, gamma=0.15416196746656105, kernel=linear ..
[CV]  C=432.37884813148855, gamma=0.15416196746656105, kernel=linear, total=   5.2s
<<434 more lines>>
[CV] C=61217.04421344494, gamma=1.6279689407405564, kernel=rbf .......
[CV]  C=61217.04421344494, gamma=1.6279689407405564, kernel=rbf, total=  36.9s
[CV] C=61217.04421344494, gamma=1.6279689407405564, kernel=rbf .......
[CV]  C=61217.04421344494, gamma=1.6279689407405564, kernel=rbf, total=  34.8s
[CV] C=926.9787684096649, gamma=2.147979593060577, kernel=rbf ........
[CV]  C=926.9787684096649, gamma=2.147979593060577, kernel=rbf, total=   9.3s
[CV] C=926.9787684096649, gamma=2.147979593060577, kernel=rbf ........
[CV]  C=926.9787684096649, gamma=2.147979593060577, kernel=rbf, total=   9.2s
[CV] C=926.9787684096649, gamma=2.147979593060577, kernel=rbf ........
[CV]  C=926.9787684096649, gamma=2.147979593060577, kernel=rbf, total=   9.4s
[CV] C=926.9787684096649, gamma=2.147979593060577, kernel=rbf ........
[CV]  C=926.9787684096649, gamma=2.147979593060577, kernel=rbf, total=   9.5s
[CV] C=926.9787684096649, gamma=2.147979593060577, kernel=rbf ........
[CV]  C=926.9787684096649, gamma=2.147979593060577, kernel=rbf, total=   9.2s
[CV] C=33946.157064934, gamma=2.2642426492862313, kernel=linear ......
[CV]  C=33946.157064934, gamma=2.2642426492862313, kernel=linear, total=  13.4s
[CV] C=33946.157064934, gamma=2.2642426492862313, kernel=linear ......
[CV]  C=33946.157064934, gamma=2.2642426492862313, kernel=linear, total=  13.5s
[CV] C=33946.157064934, gamma=2.2642426492862313, kernel=linear ......
[CV]  C=33946.157064934, gamma=2.2642426492862313, kernel=linear, total=  12.2s
[CV] C=33946.157064934, gamma=2.2642426492862313, kernel=linear ......
[CV]  C=33946.157064934, gamma=2.2642426492862313, kernel=linear, total=  13.6s
[CV] C=33946.157064934, gamma=2.2642426492862313, kernel=linear ......
[CV]  C=33946.157064934, gamma=2.2642426492862313, kernel=linear, total=  12.7s
[CV] C=84789.82947739525, gamma=0.3176359085304841, kernel=linear ....
[CV]  C=84789.82947739525, gamma=0.3176359085304841, kernel=linear, total=  34.2s
[CV] C=84789.82947739525, gamma=0.3176359085304841, kernel=linear ....
[CV]  C=84789.82947739525, gamma=0.3176359085304841, kernel=linear, total=  24.6s
[CV] C=84789.82947739525, gamma=0.3176359085304841, kernel=linear ....
[CV]  C=84789.82947739525, gamma=0.3176359085304841, kernel=linear, total=  38.2s
[CV] C=84789.82947739525, gamma=0.3176359085304841, kernel=linear ....
[CV]  C=84789.82947739525, gamma=0.3176359085304841, kernel=linear, total=  27.7s
[CV] C=84789.82947739525, gamma=0.3176359085304841, kernel=linear ....
[CV]  C=84789.82947739525, gamma=0.3176359085304841, kernel=linear, total=  21.0s
[Parallel(n_jobs=1)]: Done 250 out of 250 | elapsed: 70.9min finished
RandomizedSearchCV(cv=5, error_score='raise-deprecating',
          estimator=SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1,
  gamma='auto_deprecated', kernel='rbf', max_iter=-1, shrinking=True,
  tol=0.001, verbose=False),
          fit_params=None, iid='warn', n_iter=50, n_jobs=None,
          param_distributions={'kernel': ['linear', 'rbf'], 'C': <scipy.stats._distn_infrastructure.rv_frozen object at 0x1411fbbe0>, 'gamma': <scipy.stats._distn_infrastructure.rv_frozen object at 0x1411fb780>},
          pre_dispatch='2*n_jobs', random_state=42, refit=True,
          return_train_score='warn', scoring='neg_mean_squared_error',
          verbose=2)

The best model achieves the following score (evaluated using 5-fold cross validation):

negative_mse = rnd_search.best_score_
rmse = np.sqrt(-negative_mse)
rmse
54767.99053704408

Now this is much closer to the performance of the RandomForestRegressor (but not quite there yet). Let's check the best hyperparameters found:

rnd_search.best_params_
{'C': 157055.10989448498, 'gamma': 0.26497040005002437, 'kernel': 'rbf'}

This time the search found a good set of hyperparameters for the RBF kernel. Randomized search tends to find better hyperparameters than grid search in the same amount of time.

Let's look at the exponential distribution we used, with scale=1.0. Note that some samples are much larger or smaller than 1.0, but when you look at the log of the distribution, you can see that most values are actually concentrated roughly in the range of exp(-2) to exp(+2), which is about 0.1 to 7.4.

expon_distrib = expon(scale=1.)
samples = expon_distrib.rvs(10000, random_state=42)
plt.figure(figsize=(10, 4))
plt.subplot(121)
plt.title("Exponential distribution (scale=1.0)")
plt.hist(samples, bins=50)
plt.subplot(122)
plt.title("Log of this distribution")
plt.hist(np.log(samples), bins=50)
plt.show()

The distribution we used for C looks quite different: the scale of the samples is picked from a uniform distribution within a given range, which is why the right graph, which represents the log of the samples, looks roughly constant. This distribution is useful when you don't have a clue of what the target scale is:

reciprocal_distrib = reciprocal(20, 200000)
samples = reciprocal_distrib.rvs(10000, random_state=42)
plt.figure(figsize=(10, 4))
plt.subplot(121)
plt.title("Reciprocal distribution (scale=1.0)")
plt.hist(samples, bins=50)
plt.subplot(122)
plt.title("Log of this distribution")
plt.hist(np.log(samples), bins=50)
plt.show()

The reciprocal distribution is useful when you have no idea what the scale of the hyperparameter should be (indeed, as you can see on the figure on the right, all scales are equally likely, within the given range), whereas the exponential distribution is best when you know (more or less) what the scale of the hyperparameter should be.

3.

Question: Try adding a transformer in the preparation pipeline to select only the most important attributes.

from sklearn.base import BaseEstimator, TransformerMixin

def indices_of_top_k(arr, k):
    return np.sort(np.argpartition(np.array(arr), -k)[-k:])

class TopFeatureSelector(BaseEstimator, TransformerMixin):
    def __init__(self, feature_importances, k):
        self.feature_importances = feature_importances
        self.k = k
    def fit(self, X, y=None):
        self.feature_indices_ = indices_of_top_k(self.feature_importances, self.k)
        return self
    def transform(self, X):
        return X[:, self.feature_indices_]

Note: this feature selector assumes that you have already computed the feature importances somehow (for example using a RandomForestRegressor). You may be tempted to compute them directly in the TopFeatureSelector's fit() method, however this would likely slow down grid/randomized search since the feature importances would have to be computed for every hyperparameter combination (unless you implement some sort of cache).

Let's define the number of top features we want to keep:

k = 5

Now let's look for the indices of the top k features:

top_k_feature_indices = indices_of_top_k(feature_importances, k)
top_k_feature_indices
array([ 0,  1,  7,  9, 12])
np.array(attributes)[top_k_feature_indices]
array(['longitude', 'latitude', 'median_income', 'pop_per_hhold',
       'INLAND'], dtype='<U18')

Let's double check that these are indeed the top k features:

sorted(zip(feature_importances, attributes), reverse=True)[:k]
[(0.3661589806181342, 'median_income'),
 (0.1647809935615905, 'INLAND'),
 (0.10879295677551573, 'pop_per_hhold'),
 (0.07334423551601242, 'longitude'),
 (0.0629090704826203, 'latitude')]

Looking good... Now let's create a new pipeline that runs the previously defined preparation pipeline, and adds top k feature selection:

preparation_and_feature_selection_pipeline = Pipeline([
    ('preparation', full_pipeline),
    ('feature_selection', TopFeatureSelector(feature_importances, k))
])
housing_prepared_top_k_features = preparation_and_feature_selection_pipeline.fit_transform(housing)

Let's look at the features of the first 3 instances:

housing_prepared_top_k_features[0:3]
array([[-1.15604281,  0.77194962, -0.61493744, -0.08649871,  0.        ],
       [-1.17602483,  0.6596948 ,  1.33645936, -0.03353391,  0.        ],
       [ 1.18684903, -1.34218285, -0.5320456 , -0.09240499,  0.        ]])

Now let's double check that these are indeed the top k features:

housing_prepared[0:3, top_k_feature_indices]
array([[-1.15604281,  0.77194962, -0.61493744, -0.08649871,  0.        ],
       [-1.17602483,  0.6596948 ,  1.33645936, -0.03353391,  0.        ],
       [ 1.18684903, -1.34218285, -0.5320456 , -0.09240499,  0.        ]])

Works great! :)

4.

Question: Try creating a single pipeline that does the full data preparation plus the final prediction.

prepare_select_and_predict_pipeline = Pipeline([
    ('preparation', full_pipeline),
    ('feature_selection', TopFeatureSelector(feature_importances, k)),
    ('svm_reg', SVR(**rnd_search.best_params_))
])
prepare_select_and_predict_pipeline.fit(housing, housing_labels)
Pipeline(memory=None,
     steps=[('preparation', ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
         transformer_weights=None,
         transformers=[('num', Pipeline(memory=None,
     steps=[('imputer', SimpleImputer(copy=True, fill_value=None, missing_values=nan,
       strategy='median', verbos... gamma=0.26497040005002437, kernel='rbf', max_iter=-1, shrinking=True,
  tol=0.001, verbose=False))])

Let's try the full pipeline on a few instances:

some_data = housing.iloc[:4]
some_labels = housing_labels.iloc[:4]

print("Predictions:\t", prepare_select_and_predict_pipeline.predict(some_data))
print("Labels:\t\t", list(some_labels))
Predictions:	 [203214.28978849 371846.88152572 173295.65441612  47328.3970888 ]
Labels:		 [286600.0, 340600.0, 196900.0, 46300.0]

Well, the full pipeline seems to work fine. Of course, the predictions are not fantastic: they would be better if we used the best RandomForestRegressor that we found earlier, rather than the best SVR.

5.

Question: Automatically explore some preparation options using GridSearchCV.

param_grid = [{
    'preparation__num__imputer__strategy': ['mean', 'median', 'most_frequent'],
    'feature_selection__k': list(range(1, len(feature_importances) + 1))
}]

grid_search_prep = GridSearchCV(prepare_select_and_predict_pipeline, param_grid, cv=5,
                                scoring='neg_mean_squared_error', verbose=2)
grid_search_prep.fit(housing, housing_labels)
Fitting 5 folds for each of 48 candidates, totalling 240 fits
[CV] feature_selection__k=1, preparation__num__imputer__strategy=mean 
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=mean, total=   6.1s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=mean 
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    8.9s remaining:    0.0s
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=mean, total=   6.2s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=mean, total=   6.1s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=mean, total=   6.1s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=mean, total=   6.1s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=median, total=   6.1s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=median, total=   6.1s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=median, total=   6.2s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=median, total=   6.2s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=median, total=   6.2s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=most_frequent, total=   6.1s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=most_frequent, total=   6.3s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=most_frequent, total=   6.2s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=most_frequent, total=   6.2s
[CV] feature_selection__k=1, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=1, preparation__num__imputer__strategy=most_frequent, total=   6.2s
[CV] feature_selection__k=2, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=2, preparation__num__imputer__strategy=mean, total=   6.5s
<<414 more lines>>
[CV] feature_selection__k=15, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=15, preparation__num__imputer__strategy=most_frequent, total=  21.7s
[CV] feature_selection__k=15, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=15, preparation__num__imputer__strategy=most_frequent, total=  26.9s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=mean, total=  25.4s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=mean, total=  26.4s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=mean, total=  24.8s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=mean, total=  25.9s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=mean 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=mean, total=  21.8s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=median, total=  22.8s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=median, total=  26.1s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=median, total=  24.5s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=median, total=  20.1s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=median 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=median, total=  25.0s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=most_frequent, total=  22.3s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=most_frequent, total=  26.0s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=most_frequent, total=  23.3s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=most_frequent, total=  23.9s
[CV] feature_selection__k=16, preparation__num__imputer__strategy=most_frequent 
[CV]  feature_selection__k=16, preparation__num__imputer__strategy=most_frequent, total=  26.5s
[Parallel(n_jobs=1)]: Done 240 out of 240 | elapsed: 74.2min finished
GridSearchCV(cv=5, error_score='raise-deprecating',
       estimator=Pipeline(memory=None,
     steps=[('preparation', ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
         transformer_weights=None,
         transformers=[('num', Pipeline(memory=None,
     steps=[('imputer', SimpleImputer(copy=True, fill_value=None, missing_values=nan,
       strategy='median', verbos... gamma=0.26497040005002437, kernel='rbf', max_iter=-1, shrinking=True,
  tol=0.001, verbose=False))]),
       fit_params=None, iid='warn', n_jobs=None,
       param_grid=[{'preparation__num__imputer__strategy': ['mean', 'median', 'most_frequent'], 'feature_selection__k': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
       scoring='neg_mean_squared_error', verbose=2)
grid_search_prep.best_params_
{'feature_selection__k': 15,
 'preparation__num__imputer__strategy': 'most_frequent'}

The best imputer strategy is most_frequent and apparently almost all features are useful (15 out of 16). The last one (ISLAND) seems to just add some noise.

Congratulations! You already know quite a lot about Machine Learning. :)