This notebook contains all the sample code in chapter 16.

Setup

First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0.

#collapse-show
# Python ≥3.5 is required
import sys
assert sys.version_info >= (3, 5)

# Scikit-Learn ≥0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"

try:
    # %tensorflow_version only exists in Colab.
    %tensorflow_version 2.x
    !pip install -q -U tensorflow-addons
    IS_COLAB = True
except Exception:
    IS_COLAB = False

# TensorFlow ≥2.0 is required
import tensorflow as tf
from tensorflow import keras
assert tf.__version__ >= "2.0"

if not tf.test.is_gpu_available():
    print("No GPU was detected. LSTMs and CNNs can be very slow without a GPU.")
    if IS_COLAB:
        print("Go to Runtime > Change runtime and select a GPU hardware accelerator.")

# Common imports
import numpy as np
import os

# to make this notebook's output stable across runs
np.random.seed(42)
tf.random.set_seed(42)

# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)

# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "nlp"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
    path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format=fig_extension, dpi=resolution)

Char-RNN

Splitting a sequence into batches of shuffled windows

For example, let's split the sequence 0 to 14 into windows of length 5, each shifted by 2 (e.g.,[0, 1, 2, 3, 4], [2, 3, 4, 5, 6], etc.), then shuffle them, and split them into inputs (the first 4 steps) and targets (the last 4 steps) (e.g., [2, 3, 4, 5, 6] would be split into [[2, 3, 4, 5], [3, 4, 5, 6]]), then create batches of 3 such input/target pairs:

np.random.seed(42)
tf.random.set_seed(42)

n_steps = 5
dataset = tf.data.Dataset.from_tensor_slices(tf.range(15))
dataset = dataset.window(n_steps, shift=2, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(n_steps))
dataset = dataset.shuffle(10).map(lambda window: (window[:-1], window[1:]))
dataset = dataset.batch(3).prefetch(1)
for index, (X_batch, Y_batch) in enumerate(dataset):
    print("_" * 20, "Batch", index, "\nX_batch")
    print(X_batch.numpy())
    print("=" * 5, "\nY_batch")
    print(Y_batch.numpy())
____________________ Batch 0 
X_batch
[[6 7 8 9]
 [2 3 4 5]
 [4 5 6 7]]
===== 
Y_batch
[[ 7  8  9 10]
 [ 3  4  5  6]
 [ 5  6  7  8]]
____________________ Batch 1 
X_batch
[[ 0  1  2  3]
 [ 8  9 10 11]
 [10 11 12 13]]
===== 
Y_batch
[[ 1  2  3  4]
 [ 9 10 11 12]
 [11 12 13 14]]

Loading the Data and Preparing the Dataset

shakespeare_url = "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
filepath = keras.utils.get_file("shakespeare.txt", shakespeare_url)
with open(filepath) as f:
    shakespeare_text = f.read()
print(shakespeare_text[:148])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

"".join(sorted(set(shakespeare_text.lower())))
"\n !$&',-.3:;?abcdefghijklmnopqrstuvwxyz"
tokenizer = keras.preprocessing.text.Tokenizer(char_level=True)
tokenizer.fit_on_texts(shakespeare_text)
tokenizer.texts_to_sequences(["First"])
[[20, 6, 9, 8, 3]]
tokenizer.sequences_to_texts([[20, 6, 9, 8, 3]])
['f i r s t']
max_id = len(tokenizer.word_index) # number of distinct characters
dataset_size = tokenizer.document_count # total number of characters
[encoded] = np.array(tokenizer.texts_to_sequences([shakespeare_text])) - 1
train_size = dataset_size * 90 // 100
dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])
n_steps = 100
window_length = n_steps + 1 # target = input shifted 1 character ahead
dataset = dataset.repeat().window(window_length, shift=1, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(window_length))
np.random.seed(42)
tf.random.set_seed(42)
batch_size = 32
dataset = dataset.shuffle(10000).batch(batch_size)
dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))
dataset = dataset.map(
    lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))
dataset = dataset.prefetch(1)
for X_batch, Y_batch in dataset.take(1):
    print(X_batch.shape, Y_batch.shape)
(32, 100, 39) (32, 100)

Creating and Training the Model

model = keras.models.Sequential([
    keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id],
                     # no dropout in stateful RNN (https://github.com/ageron/handson-ml2/issues/32)
                     # dropout=0.2, recurrent_dropout=0.2,
                     ),
    keras.layers.GRU(128, return_sequences=True,
                     # dropout=0.2, recurrent_dropout=0.2
                    ),
    keras.layers.TimeDistributed(keras.layers.Dense(max_id,
                                                    activation="softmax"))
])
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam")
history = model.fit(dataset, steps_per_epoch=train_size // batch_size,
                    epochs=10)
Epoch 1/10
31370/31370 [==============================] - 6063s 193ms/step - loss: 1.7662
Epoch 2/10
31370/31370 [==============================] - 5744s 183ms/step - loss: 1.6649
Epoch 3/10
31370/31370 [==============================] - 5320s 170ms/step - loss: 1.6508
Epoch 4/10
31370/31370 [==============================] - 5318s 170ms/step - loss: 1.6400
Epoch 5/10
31370/31370 [==============================] - 5318s 170ms/step - loss: 1.6359
Epoch 6/10
31370/31370 [==============================] - 5316s 169ms/step - loss: 1.6344
Epoch 7/10
31370/31370 [==============================] - 5489s 175ms/step - loss: 1.6336
Epoch 8/10
31370/31370 [==============================] - 5638s 180ms/step - loss: 1.6277
Epoch 9/10
31370/31370 [==============================] - 5709s 182ms/step - loss: 1.6309
Epoch 10/10
31370/31370 [==============================] - 6107s 195ms/step - loss: 1.6317

Using the Model to Generate Text

def preprocess(texts):
    X = np.array(tokenizer.texts_to_sequences(texts)) - 1
    return tf.one_hot(X, max_id)
X_new = preprocess(["How are yo"])
Y_pred = model.predict_classes(X_new)
tokenizer.sequences_to_texts(Y_pred + 1)[0][-1] # 1st sentence, last char
'u'
tf.random.set_seed(42)

tf.random.categorical([[np.log(0.5), np.log(0.4), np.log(0.1)]], num_samples=40).numpy()
array([[0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 0, 2, 1,
        0, 1, 2, 1, 1, 1, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2]])
def next_char(text, temperature=1):
    X_new = preprocess([text])
    y_proba = model.predict(X_new)[0, -1:, :]
    rescaled_logits = tf.math.log(y_proba) / temperature
    char_id = tf.random.categorical(rescaled_logits, num_samples=1) + 1
    return tokenizer.sequences_to_texts(char_id.numpy())[0]
tf.random.set_seed(42)

next_char("How are yo", temperature=1)
'u'
def complete_text(text, n_chars=50, temperature=1):
    for _ in range(n_chars):
        text += next_char(text, temperature)
    return text
tf.random.set_seed(42)

print(complete_text("t", temperature=0.2))
the belly the great and who shall be the belly the 
print(complete_text("t", temperature=1))
thing? or why you gremio.
who make which the first 
print(complete_text("t", temperature=2))
th no cce:
yeolg-hormer firi. a play asks.
fol rusb

Stateful RNN

tf.random.set_seed(42)
dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])
dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(window_length))
dataset = dataset.repeat().batch(1)
dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))
dataset = dataset.map(
    lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))
dataset = dataset.prefetch(1)
batch_size = 32
encoded_parts = np.array_split(encoded[:train_size], batch_size)
datasets = []
for encoded_part in encoded_parts:
    dataset = tf.data.Dataset.from_tensor_slices(encoded_part)
    dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)
    dataset = dataset.flat_map(lambda window: window.batch(window_length))
    datasets.append(dataset)
dataset = tf.data.Dataset.zip(tuple(datasets)).map(lambda *windows: tf.stack(windows))
dataset = dataset.repeat().map(lambda windows: (windows[:, :-1], windows[:, 1:]))
dataset = dataset.map(
    lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))
dataset = dataset.prefetch(1)
model = keras.models.Sequential([
    keras.layers.GRU(128, return_sequences=True, stateful=True,
                     dropout=0.2, recurrent_dropout=0.2,
                     batch_input_shape=[batch_size, None, max_id]),
    keras.layers.GRU(128, return_sequences=True, stateful=True,
                     dropout=0.2, recurrent_dropout=0.2),
    keras.layers.TimeDistributed(keras.layers.Dense(max_id,
                                                    activation="softmax"))
])
class ResetStatesCallback(keras.callbacks.Callback):
    def on_epoch_begin(self, epoch, logs):
        self.model.reset_states()
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam")
steps_per_epoch = train_size // batch_size // n_steps
model.fit(dataset, steps_per_epoch=steps_per_epoch, epochs=50,
                   callbacks=[ResetStatesCallback()])
Epoch 1/50
313/313 [==============================] - 101s 322ms/step - loss: 2.6180
Epoch 2/50
313/313 [==============================] - 98s 312ms/step - loss: 2.2312
Epoch 3/50
313/313 [==============================] - 96s 306ms/step - loss: 2.2992
Epoch 4/50
313/313 [==============================] - 96s 308ms/step - loss: 2.4599
Epoch 5/50
313/313 [==============================] - 97s 309ms/step - loss: 2.4062
Epoch 6/50
313/313 [==============================] - 97s 310ms/step - loss: 2.0630
Epoch 7/50
313/313 [==============================] - 97s 311ms/step - loss: 2.0933
Epoch 8/50
313/313 [==============================] - 97s 309ms/step - loss: 2.0784
Epoch 9/50
313/313 [==============================] - 95s 304ms/step - loss: 2.0101
Epoch 10/50
313/313 [==============================] - 95s 302ms/step - loss: 1.9146
Epoch 11/50
313/313 [==============================] - 97s 309ms/step - loss: 1.9204
Epoch 12/50
313/313 [==============================] - 95s 305ms/step - loss: 1.9049
Epoch 13/50
313/313 [==============================] - 92s 295ms/step - loss: 1.8894
Epoch 14/50
313/313 [==============================] - 93s 296ms/step - loss: 1.8397
Epoch 15/50
313/313 [==============================] - 93s 296ms/step - loss: 1.8147
Epoch 16/50
313/313 [==============================] - 92s 293ms/step - loss: 1.8147
Epoch 17/50
313/313 [==============================] - 92s 295ms/step - loss: 1.7741
Epoch 18/50
<<30 more lines>>
313/313 [==============================] - 93s 298ms/step - loss: 1.6102
Epoch 34/50
313/313 [==============================] - 93s 298ms/step - loss: 1.6063
Epoch 35/50
313/313 [==============================] - 96s 306ms/step - loss: 1.6022
Epoch 36/50
313/313 [==============================] - 91s 291ms/step - loss: 1.5984
Epoch 37/50
313/313 [==============================] - 91s 291ms/step - loss: 1.5964
Epoch 38/50
313/313 [==============================] - 92s 293ms/step - loss: 1.5924
Epoch 39/50
313/313 [==============================] - 97s 310ms/step - loss: 1.5903
Epoch 40/50
313/313 [==============================] - 93s 298ms/step - loss: 1.5882
Epoch 41/50
313/313 [==============================] - 95s 303ms/step - loss: 1.5867
Epoch 42/50
313/313 [==============================] - 92s 294ms/step - loss: 1.5826
Epoch 43/50
313/313 [==============================] - 92s 294ms/step - loss: 1.5817
Epoch 44/50
313/313 [==============================] - 92s 295ms/step - loss: 1.5796
Epoch 45/50
313/313 [==============================] - 92s 295ms/step - loss: 1.5765
Epoch 46/50
313/313 [==============================] - 92s 294ms/step - loss: 1.5741
Epoch 47/50
313/313 [==============================] - 92s 295ms/step - loss: 1.5733
Epoch 48/50
313/313 [==============================] - 92s 293ms/step - loss: 1.5706
Epoch 49/50
313/313 [==============================] - 90s 289ms/step - loss: 1.5703
Epoch 50/50
313/313 [==============================] - 90s 288ms/step - loss: 1.5666
<tensorflow.python.keras.callbacks.History at 0xd37b57908>

To use the model with different batch sizes, we need to create a stateless copy. We can get rid of dropout since it is only used during training:

stateless_model = keras.models.Sequential([
    keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id]),
    keras.layers.GRU(128, return_sequences=True),
    keras.layers.TimeDistributed(keras.layers.Dense(max_id,
                                                    activation="softmax"))
])

To set the weights, we first need to build the model (so the weights get created):

stateless_model.build(tf.TensorShape([None, None, max_id]))
stateless_model.set_weights(model.get_weights())
model = stateless_model
tf.random.set_seed(42)

print(complete_text("t"))
torp:
unto most breathe blood him sight,
which rest

Sentiment Analysis

tf.random.set_seed(42)

You can load the IMDB dataset easily:

(X_train, y_test), (X_valid, y_test) = keras.datasets.imdb.load_data()
X_train[0][:10]
[1, 14, 22, 16, 43, 530, 973, 1622, 1385, 65]
word_index = keras.datasets.imdb.get_word_index()
id_to_word = {id_ + 3: word for word, id_ in word_index.items()}
for id_, token in enumerate(("<pad>", "<sos>", "<unk>")):
    id_to_word[id_] = token
" ".join([id_to_word[id_] for id_ in X_train[0][:10]])
'<sos> this film was just brilliant casting location scenery story'
import tensorflow_datasets as tfds

datasets, info = tfds.load("imdb_reviews", as_supervised=True, with_info=True)
datasets.keys()
dict_keys(['test', 'train'])
train_size = info.splits["train"].num_examples
test_size = info.splits["test"].num_examples
train_size, test_size
(25000, 25000)
for X_batch, y_batch in datasets["train"].batch(2).take(1):
    for review, label in zip(X_batch.numpy(), y_batch.numpy()):
        print("Review:", review.decode("utf-8")[:200], "...")
        print("Label:", label, "= Positive" if label else "= Negative")
        print()
Review: This was soul-provoking! I am an Iranian, and living in th 21st century, I didn't know that such big tribes have been living in such conditions at the time of my grandfather!<br /><br />You see that t ...
Label: 1 = Positive

Review: A very close and sharp discription of the bubbling and dynamic emotional world of specialy one 18year old guy, that makes his first experiences in his gay love to an other boy, during an vacation with ...
Label: 1 = Positive

def preprocess(X_batch, y_batch):
    X_batch = tf.strings.substr(X_batch, 0, 300)
    X_batch = tf.strings.regex_replace(X_batch, rb"<br\s*/?>", b" ")
    X_batch = tf.strings.regex_replace(X_batch, b"[^a-zA-Z']", b" ")
    X_batch = tf.strings.split(X_batch)
    return X_batch.to_tensor(default_value=b"<pad>"), y_batch
preprocess(X_batch, y_batch)
(<tf.Tensor: id=235, shape=(2, 57), dtype=string, numpy=
 array([[b'This', b'was', b'soul', b'provoking', b'I', b'am', b'an',
         b'Iranian', b'and', b'living', b'in', b'th', b'st', b'century',
         b'I', b"didn't", b'know', b'that', b'such', b'big', b'tribes',
         b'have', b'been', b'living', b'in', b'such', b'conditions',
         b'at', b'the', b'time', b'of', b'my', b'grandfather', b'You',
         b'see', b'that', b'today', b'or', b'even', b'in', b'on', b'one',
         b'side', b'of', b'the', b'world', b'a', b'lady', b'or', b'a',
         b'baby', b'could', b'have', b'everything', b'served', b'for',
         b'hi'],
        [b'A', b'very', b'close', b'and', b'sharp', b'discription', b'of',
         b'the', b'bubbling', b'and', b'dynamic', b'emotional', b'world',
         b'of', b'specialy', b'one', b'year', b'old', b'guy', b'that',
         b'makes', b'his', b'first', b'experiences', b'in', b'his',
         b'gay', b'love', b'to', b'an', b'other', b'boy', b'during',
         b'an', b'vacation', b'with', b'a', b'part', b'of', b'his',
         b'family', b'I', b'liked', b'this', b'film', b'because', b'of',
         b'his', b'extremly', b'clear', b'and', b'surrogated', b'sto',
         b'<pad>', b'<pad>', b'<pad>', b'<pad>']], dtype=object)>,
 <tf.Tensor: id=128, shape=(2,), dtype=int64, numpy=array([1, 1])>)
from collections import Counter

vocabulary = Counter()
for X_batch, y_batch in datasets["train"].batch(32).map(preprocess):
    for review in X_batch:
        vocabulary.update(list(review.numpy()))
vocabulary.most_common()[:3]
[(b'<pad>', 214077), (b'the', 61137), (b'a', 38564)]
len(vocabulary)
53893
vocab_size = 10000
truncated_vocabulary = [
    word for word, count in vocabulary.most_common()[:vocab_size]]
word_to_id = {word: index for index, word in enumerate(truncated_vocabulary)}
for word in b"This movie was faaaaaantastic".split():
    print(word_to_id.get(word) or vocab_size)
22
12
11
10000
words = tf.constant(truncated_vocabulary)
word_ids = tf.range(len(truncated_vocabulary), dtype=tf.int64)
vocab_init = tf.lookup.KeyValueTensorInitializer(words, word_ids)
num_oov_buckets = 1000
table = tf.lookup.StaticVocabularyTable(vocab_init, num_oov_buckets)
table.lookup(tf.constant([b"This movie was faaaaaantastic".split()]))
<tf.Tensor: id=126936, shape=(1, 4), dtype=int64, numpy=array([[   22,    12,    11, 10053]])>
def encode_words(X_batch, y_batch):
    return table.lookup(X_batch), y_batch

train_set = datasets["train"].repeat().batch(32).map(preprocess)
train_set = train_set.map(encode_words).prefetch(1)
for X_batch, y_batch in train_set.take(1):
    print(X_batch)
    print(y_batch)
tf.Tensor(
[[    6    98     9 ...     0     0     0]
 [  185     2 10865 ...     0     0     0]
 [  719  2410  5630 ...     0     0     0]
 ...
 [    6    94    13 ...     0     0     0]
 [   14   498    16 ...     0     0     0]
 [  168     1  1633 ...     0     0     0]], shape=(32, 64), dtype=int64)
tf.Tensor([1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 0], shape=(32,), dtype=int64)
embed_size = 128
model = keras.models.Sequential([
    keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size,
                           mask_zero=True, # not shown in the book
                           input_shape=[None]),
    keras.layers.GRU(128, return_sequences=True),
    keras.layers.GRU(128),
    keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5)
Epoch 1/5
781/781 [==============================] - 102s 131ms/step - loss: 0.5378 - accuracy: 0.7238
Epoch 2/5
781/781 [==============================] - 87s 111ms/step - loss: 0.3485 - accuracy: 0.8567
Epoch 3/5
781/781 [==============================] - 87s 111ms/step - loss: 0.1877 - accuracy: 0.9332
Epoch 4/5
781/781 [==============================] - 87s 111ms/step - loss: 0.1236 - accuracy: 0.9573
Epoch 5/5
781/781 [==============================] - 87s 111ms/step - loss: 0.0964 - accuracy: 0.9667

Or using manual masking:

K = keras.backend
embed_size = 128
inputs = keras.layers.Input(shape=[None])
mask = keras.layers.Lambda(lambda inputs: K.not_equal(inputs, 0))(inputs)
z = keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size)(inputs)
z = keras.layers.GRU(128, return_sequences=True)(z, mask=mask)
z = keras.layers.GRU(128)(z, mask=mask)
outputs = keras.layers.Dense(1, activation="sigmoid")(z)
model = keras.models.Model(inputs=[inputs], outputs=[outputs])
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5)
Epoch 1/5
781/781 [==============================] - 102s 131ms/step - loss: 0.5436 - accuracy: 0.7172
Epoch 2/5
781/781 [==============================] - 88s 113ms/step - loss: 0.3519 - accuracy: 0.8564
Epoch 3/5
781/781 [==============================] - 87s 111ms/step - loss: 0.1950 - accuracy: 0.9306
Epoch 4/5
781/781 [==============================] - 87s 111ms/step - loss: 0.1226 - accuracy: 0.9579
Epoch 5/5
781/781 [==============================] - 86s 110ms/step - loss: 0.0922 - accuracy: 0.9679

Reusing Pretrained Embeddings

tf.random.set_seed(42)
TFHUB_CACHE_DIR = os.path.join(os.curdir, "my_tfhub_cache")
os.environ["TFHUB_CACHE_DIR"] = TFHUB_CACHE_DIR
import tensorflow_hub as hub

model = keras.Sequential([
    hub.KerasLayer("https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1",
                   dtype=tf.string, input_shape=[], output_shape=[50]),
    keras.layers.Dense(128, activation="relu"),
    keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="adam",
              metrics=["accuracy"])
for dirpath, dirnames, filenames in os.walk(TFHUB_CACHE_DIR):
    for filename in filenames:
        print(os.path.join(dirpath, filename))
./my_tfhub_cache/82c4aaf4250ffb09088bd48368ee7fd00e5464fe.descriptor.txt
./my_tfhub_cache/82c4aaf4250ffb09088bd48368ee7fd00e5464fe/saved_model.pb
./my_tfhub_cache/82c4aaf4250ffb09088bd48368ee7fd00e5464fe/variables/variables.data-00000-of-00001
./my_tfhub_cache/82c4aaf4250ffb09088bd48368ee7fd00e5464fe/variables/variables.index
./my_tfhub_cache/82c4aaf4250ffb09088bd48368ee7fd00e5464fe/assets/tokens.txt
import tensorflow_datasets as tfds

datasets, info = tfds.load("imdb_reviews", as_supervised=True, with_info=True)
train_size = info.splits["train"].num_examples
batch_size = 32
train_set = datasets["train"].repeat().batch(batch_size).prefetch(1)
history = model.fit(train_set, steps_per_epoch=train_size // batch_size, epochs=5)
Epoch 1/5
781/781 [==============================] - 119s 152ms/step - loss: 0.5499 - accuracy: 0.7230
Epoch 2/5
781/781 [==============================] - 119s 152ms/step - loss: 0.5133 - accuracy: 0.7486
Epoch 3/5
781/781 [==============================] - 117s 150ms/step - loss: 0.5078 - accuracy: 0.7518
Epoch 4/5
781/781 [==============================] - 118s 151ms/step - loss: 0.5042 - accuracy: 0.7540
Epoch 5/5
781/781 [==============================] - 122s 156ms/step - loss: 0.5010 - accuracy: 0.7574

Automatic Translation

tf.random.set_seed(42)
vocab_size = 100
embed_size = 10
import tensorflow_addons as tfa

encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)

embeddings = keras.layers.Embedding(vocab_size, embed_size)
encoder_embeddings = embeddings(encoder_inputs)
decoder_embeddings = embeddings(decoder_inputs)

encoder = keras.layers.LSTM(512, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_embeddings)
encoder_state = [state_h, state_c]

sampler = tfa.seq2seq.sampler.TrainingSampler()

decoder_cell = keras.layers.LSTMCell(512)
output_layer = keras.layers.Dense(vocab_size)
decoder = tfa.seq2seq.basic_decoder.BasicDecoder(decoder_cell, sampler,
                                                 output_layer=output_layer)
final_outputs, final_state, final_sequence_lengths = decoder(
    decoder_embeddings, initial_state=encoder_state,
    sequence_length=sequence_lengths)
Y_proba = tf.nn.softmax(final_outputs.rnn_output)

model = keras.models.Model(
    inputs=[encoder_inputs, decoder_inputs, sequence_lengths],
    outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam")
X = np.random.randint(100, size=10*1000).reshape(1000, 10)
Y = np.random.randint(100, size=15*1000).reshape(1000, 15)
X_decoder = np.c_[np.zeros((1000, 1)), Y[:, :-1]]
seq_lengths = np.full([1000], 15)

history = model.fit([X, X_decoder, seq_lengths], Y, epochs=2)
Epoch 1/2
1000/1000 [==============================] - 6s 6ms/sample - loss: 4.6054
Epoch 2/2
1000/1000 [==============================] - 5s 5ms/sample - loss: 4.6041

Bidirectional Recurrent Layers

model = keras.models.Sequential([
    keras.layers.GRU(10, return_sequences=True, input_shape=[None, 10]),
    keras.layers.Bidirectional(keras.layers.GRU(10, return_sequences=True))
])

model.summary()
Model: "sequential_2"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
gru_4 (GRU)                  (None, None, 10)          660       
_________________________________________________________________
bidirectional (Bidirectional (None, None, 20)          1320      
=================================================================
Total params: 1,980
Trainable params: 1,980
Non-trainable params: 0
_________________________________________________________________

Positional Encoding

class PositionalEncoding(keras.layers.Layer):
    def __init__(self, max_steps, max_dims, dtype=tf.float32, **kwargs):
        super().__init__(dtype=dtype, **kwargs)
        if max_dims % 2 == 1: max_dims += 1 # max_dims must be even
        p, i = np.meshgrid(np.arange(max_steps), np.arange(max_dims // 2))
        pos_emb = np.empty((1, max_steps, max_dims))
        pos_emb[0, :, ::2] = np.sin(p / 10000**(2 * i / max_dims)).T
        pos_emb[0, :, 1::2] = np.cos(p / 10000**(2 * i / max_dims)).T
        self.positional_embedding = tf.constant(pos_emb.astype(self.dtype))
    def call(self, inputs):
        shape = tf.shape(inputs)
        return inputs + self.positional_embedding[:, :shape[-2], :shape[-1]]
max_steps = 201
max_dims = 512
pos_emb = PositionalEncoding(max_steps, max_dims)
PE = pos_emb(np.zeros((1, max_steps, max_dims), np.float32))[0].numpy()
i1, i2, crop_i = 100, 101, 150
p1, p2, p3 = 22, 60, 35
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(9, 5))
ax1.plot([p1, p1], [-1, 1], "k--", label="$p = {}$".format(p1))
ax1.plot([p2, p2], [-1, 1], "k--", label="$p = {}$".format(p2), alpha=0.5)
ax1.plot(p3, PE[p3, i1], "bx", label="$p = {}$".format(p3))
ax1.plot(PE[:,i1], "b-", label="$i = {}$".format(i1))
ax1.plot(PE[:,i2], "r-", label="$i = {}$".format(i2))
ax1.plot([p1, p2], [PE[p1, i1], PE[p2, i1]], "bo")
ax1.plot([p1, p2], [PE[p1, i2], PE[p2, i2]], "ro")
ax1.legend(loc="center right", fontsize=14, framealpha=0.95)
ax1.set_ylabel("$P_{(p,i)}$", rotation=0, fontsize=16)
ax1.grid(True, alpha=0.3)
ax1.hlines(0, 0, max_steps - 1, color="k", linewidth=1, alpha=0.3)
ax1.axis([0, max_steps - 1, -1, 1])
ax2.imshow(PE.T[:crop_i], cmap="gray", interpolation="bilinear", aspect="auto")
ax2.hlines(i1, 0, max_steps - 1, color="b")
cheat = 2 # need to raise the red line a bit, or else it hides the blue one
ax2.hlines(i2+cheat, 0, max_steps - 1, color="r")
ax2.plot([p1, p1], [0, crop_i], "k--")
ax2.plot([p2, p2], [0, crop_i], "k--", alpha=0.5)
ax2.plot([p1, p2], [i2+cheat, i2+cheat], "ro")
ax2.plot([p1, p2], [i1, i1], "bo")
ax2.axis([0, max_steps - 1, 0, crop_i])
ax2.set_xlabel("$p$", fontsize=16)
ax2.set_ylabel("$i$", rotation=0, fontsize=16)
plt.savefig("positional_embedding_plot")
plt.show()
embed_size = 512; max_steps = 500; vocab_size = 10000
encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
embeddings = keras.layers.Embedding(vocab_size, embed_size)
encoder_embeddings = embeddings(encoder_inputs)
decoder_embeddings = embeddings(decoder_inputs)
positional_encoding = PositionalEncoding(max_steps, max_dims=embed_size)
encoder_in = positional_encoding(encoder_embeddings)
decoder_in = positional_encoding(decoder_embeddings)

Here is a (very) simplified Transformer (the actual architecture has skip connections, layer norm, dense nets, and most importantly it uses Multi-Head Attention instead of regular Attention):

Z = encoder_in
for N in range(6):
    Z = keras.layers.Attention(use_scale=True)([Z, Z])

encoder_outputs = Z
Z = decoder_in
for N in range(6):
    Z = keras.layers.Attention(use_scale=True, causal=True)([Z, Z])
    Z = keras.layers.Attention(use_scale=True)([Z, encoder_outputs])

outputs = keras.layers.TimeDistributed(
    keras.layers.Dense(vocab_size, activation="softmax"))(Z)

Here's a basic implementation of the MultiHeadAttention layer. One will likely be added to keras.layers in the near future. Note that Conv1D layers with kernel_size=1 (and the default padding="valid" and strides=1) is equivalent to a TimeDistributed(Dense(...)) layer.

K = keras.backend

class MultiHeadAttention(keras.layers.Layer):
    def __init__(self, n_heads, causal=False, use_scale=False, **kwargs):
        self.n_heads = n_heads
        self.causal = causal
        self.use_scale = use_scale
        super().__init__(**kwargs)
    def build(self, batch_input_shape):
        self.dims = batch_input_shape[0][-1]
        self.q_dims, self.v_dims, self.k_dims = [self.dims // self.n_heads] * 3 # could be hyperparameters instead
        self.q_linear = keras.layers.Conv1D(self.n_heads * self.q_dims, kernel_size=1, use_bias=False)
        self.v_linear = keras.layers.Conv1D(self.n_heads * self.v_dims, kernel_size=1, use_bias=False)
        self.k_linear = keras.layers.Conv1D(self.n_heads * self.k_dims, kernel_size=1, use_bias=False)
        self.attention = keras.layers.Attention(causal=self.causal, use_scale=self.use_scale)
        self.out_linear = keras.layers.Conv1D(self.dims, kernel_size=1, use_bias=False)
        super().build(batch_input_shape)
    def _multi_head_linear(self, inputs, linear):
        shape = K.concatenate([K.shape(inputs)[:-1], [self.n_heads, -1]])
        projected = K.reshape(linear(inputs), shape)
        perm = K.permute_dimensions(projected, [0, 2, 1, 3])
        return K.reshape(perm, [shape[0] * self.n_heads, shape[1], -1])
    def call(self, inputs):
        q = inputs[0]
        v = inputs[1]
        k = inputs[2] if len(inputs) > 2 else v
        shape = K.shape(q)
        q_proj = self._multi_head_linear(q, self.q_linear)
        v_proj = self._multi_head_linear(v, self.v_linear)
        k_proj = self._multi_head_linear(k, self.k_linear)
        multi_attended = self.attention([q_proj, v_proj, k_proj])
        shape_attended = K.shape(multi_attended)
        reshaped_attended = K.reshape(multi_attended, [shape[0], self.n_heads, shape_attended[1], shape_attended[2]])
        perm = K.permute_dimensions(reshaped_attended, [0, 2, 1, 3])
        concat = K.reshape(perm, [shape[0], shape_attended[1], -1])
        return self.out_linear(concat)
Q = np.random.rand(2, 50, 512)
V = np.random.rand(2, 80, 512)
multi_attn = MultiHeadAttention(8)
multi_attn([Q, V]).shape
TensorShape([2, 50, 512])